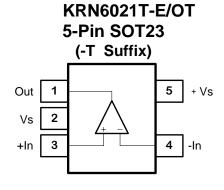


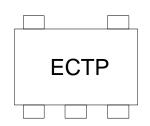
Features

- Single- Supply Operation from +2.2V ~ +5.5V
- Rail-to-Rail Input 1 Output
- Gain-Bandwidth Product: 10MHz (Typ.)
- Low Input Bias Current: 10pA (Typ.)
- Low Offset Voltage: 5mV (Max.)
- Quiescent Current: 800µA per Amplifier (Typ.)
- Operating Temperature: -40C ~ +125C
- Available in SOT23-5 Package

Applications


- Portable Equipment
- Mobile Communications
- Smoke Detector
- Sensor Interface
- Medical Instrumentation

General Description


The KRN6021T-E/OT is wideband, low-noise, low-distortio n dualoperational amplifier, that offer rail-torail inputs 1 outputs and single supply operation down to 2.2V.They draw 1.6mAof quiescent supply current while featuring ultra-low distortion (0.0002% THD+N), as well as low input voltage-noise density (15nV/Hz) and low input currentnoise density (0.5fA/Hz). These features make the devices an ideal choicef or applications that require low distortion and/or low noise. These amplifiers have inputs and outputs which swing rail-torail and their input common mode voltage range includes ground. The maximum input offset of these amplifiers is less than 5mV.

The KRN6021T-E/OT are unity gain stable with gain-bandwidof 10MHz. The KRN6021T-E/OT is available in SOT23-5packages. The extended temperature range of -40C to+125C over all supply voltages offers additional design flexibility.

Pin Assignments

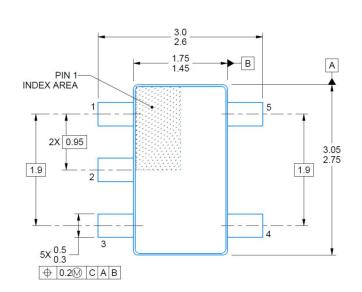
Marking

Electrical Characteristics

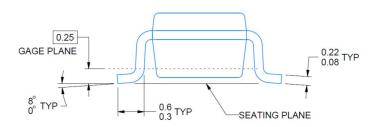
(VDD=+5V, Vss=OV, VCM=0V, VOUT=VDD/2, RL=100K tied to VDD/2, SHDNB=VDD,TA=-40C to+125C, unless otherwise noted. Typical values are at TA=+259C.) (Notes 1)

Parameter	Symbol	Conditions	Min.	Тур.	Max.	Units
Supply-Voltage Range	VDD	Guaranteed by the PSRR test	2.2	-	5.5	V
Quiescent Supply Current (per	lop	V _{DD} = 3V	-	0.8	-	mA
Amplifier)		V _{DD} = 5V		0.8	1.2	
Input Offset Voltage	Vos	T _A = +25℃	-/	-	±5	mV
		T _A = -40℃ to +85℃	-	-	1 -	
		T _A = -40℃ to +125℃	1 -	-	±1.5	
Input Offset Voltage Tempco	ΔVos/ΔT		-	±0.3	±6	µV/℃
Input Bias Current	lв	(Note 3)		±1	±100	pA
Input Offset Current	los	(Note 3)	- /	±1	±100	pA
Input Common-Mode Voltage Range	Vсм	Guaranteed by the T _A = 25℃	-0.2	-	V _{DD} +0.2	
	VCM	CMRR test T _A = -40°C to +125°C	0	-	V _{DD} 0	
Common-Mode Rejection Ratio	CMRR	Vss-0.2V≤Vcм≤Vdd+0.2V T _A = +25℃		75		dB
		Vss≤VcM≤5V TA = +25°C	65	80	÷	
	8	Vss-0.2V≤Vcм≤Vdd+0.2V T _A = -40℃ to +125℃	-/	65	-	
Power-Supply Rejection Ratio	PSRR	V _{DD} = +2.2V to +5.5V	75	90	-	dB
Open-Loop Voltage Gain	Av	RL=100kΩ to Voo/2, 100mV≤Vo≤Voo -125mV	90	100	-	dB
		RL=1kΩ to VDD/2, 200mV≤Vo≤VDD -250mV	75	85	-	
		RL=500Ω to VDD/2, 350mV≤Vo≤VDD -500mV	55	65	-	
Output Voltage Swing	Vouт	V _{IN+} -V _{IN-} ≥ 10mV V _{DD} -V _{OH}	-	10	35	mV
		$R_L = 10k\Omega$ to $V_{DD}/2$ $V_{OL}-V_{SS}$	-	10	30	
		$ V_{IN+-}V_{IN-} \ge 10mV$ $V_{DD-}V_{OH}$	-	80	200	
		$R_L = 1k\Omega$ to $V_{DD}/2$ $V_{OL}-V_{SS}$	(*)	50	150	
		$ V_{IN+}-V_{IN-} \ge 10mV$ $V_{DD}-V_{OH}$		100	350	

Power-Supply Rejection Ratio	PSRR	V _{DD} = +2.2V to +5.5V	75	90	-	dB
Open-Loop Voltage Gain	Av	RL=100kΩ to Voo/2, 100mV≤Vo≤Voo -125mV	90	100	-	dB
		RL=1kΩ to VDD/2, 200mV≤Vo≤VDD -250mV	75	85	-	
		RL=500Ω to Vpb/2, 350mV≤Vo≤Vpb -500mV	55	65	-	
Output Voltage Swing	Vouт	V _{IN+} -V _{IN-} ≥ 10mV V _{DD} -V _{OH}	-	10	35	mV
		$R_L = 10k\Omega$ to $V_{DD}/2$ $V_{OL}-V_{SS}$	-	10	30	
		V _{IN+} -V _{IN-} ≥ 10mV V _{DD} -V _{OH}	-	80	200	
		$R_L = 1k\Omega$ to $V_{DD}/2$ $V_{OL}-V_{SS}$	-	50	150	
		$ V_{\text{IN+-}}V_{\text{IN-}} \ge 10\text{mV}$ VDD-VOH		100	350	
Capacitive-Load Stability	CLOAD	No sustained oscillations. Av = +1V/V	-	200	18.53	pF
Peak-to-Peak Input Noise Voltage (Note 5)	en(p-p)	f = 0.1Hz to 10Hz	/-	5	12	μ∨р-р
Input Voltage Noise Density	en	f = 10Hz		60	-	nV/√Hz
		f = 1kHz	-	30		
		f = 30kHz	-	15	-	
Input Current Noise Density	İn	f = 1kHz				fA/√Hz
Total Harmonic Distortion plus Noise	THD+N	Vout = $2Vp-p$, Av = $+1V/V$, $f = 1kHz$	-	0.0001	-	
		RL = $10k\Omega$ to GND $f = 20kHz$ Vout = $2Vp-p$,	2	0.002	-	%
		Av = +1V/V, $f = 1kHz$	-	0.0002	-	
		RL = $1k\Omega$ to GND f = $20kHz$	-	0.004	-	


Note 1: All devices are 100% production tested at TA = +25C; all specifications over the automotive

temperature range is guaranteed by design, not production tested. Note 2: Parameter is guaranteed by design.


Note 3: Peak-to-peak input noise voltage is defined as six times RMS value of input noise voltage.

PACKAGE MECHANICAL DATA

REEL SPECIFICATION

P/N	PKG	QTY
KRN6021T-E/OT	SOT-23-5	3000